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TECHNICAL NOTE NO, 1006

VEBLOCITY DISTRIBUTION ON WING SECTIONS OF ARBITRARY SHAPZR
IN COMPRESSIBLE FOTENTIAL FLOW “
I - SYMMETRIC FLOWS OBEYING THZR
SIMPLIFIED DENSITY-SPREED RELATION

By Lipman Bers
SUMMARY

Ae =z first step toward the computation of the veloclty
distribution along a wing profile of arbiirary shave in a
compresslible filunid, the circulation-free flow around a sym-
metrlcal profile is treated under the assumption of the sim-
plified density-speed relation due to Tchaplygin, Kdrmén, and
Tsien., The velocity distribution problem is reduced t0 a mnon-
linear integrel eguation which is solved dy a falrly rapidly
convergent iteration method., XNumerical examples are glven.

INTRODUCTION

The central problem in the two-dimensional theory of a
potential flow of a perfect fluid around an alrfoil profile
is that of determining the pressure disgtribuition on a profile
of given shape i1f the spesd and dirsction of the flow at in-
finity (undisturbed flow) are known. 4 solution of this
problem should consist not merely of giving a mathematical
existence proof but of indicating a method for obtaining nu-
merical resulis of reasonable accuracy in a reasonable amount
of time, :

The difficulty of the problem depends essentially upon
the prescribed speed at infinity. If this speed doee not ex-
ceed a certain limiting value (depending upon the profile) the
flow will be everywhere subsonic. PFer higher values of the




speed at infinity ths flow becomes partly supersonic (mixed
or supercritical flow). Finally, it is probable that for
too high values of the speocd at infinity a potential flow
becomes either mathematically impossidle or unstable. The
case of mixed flow is the more important one, both from the
bPractical and theoretical points of view, Neverthelese, it
seems that the complete solution of the problem of everywhere
subsonic¢ flows is & necessary prersquisite for a succeseful
attack on the problem of transition through the speed of
sound. -(In fact, at present the very existence of mixed
flows pest a profile has not yet been proved. )

In view of the admitted difficulty of the problem 1t is
advisable to develop the mathematical apparatus by consider-
ing firat the simplest possible cases. The most radical sim-
plification would be, of course, to neglect compressibility
altogether, Tnder these assumptions the pressure distribution
problem has beern solved completely. (See references 1 and 2,)
In the present report the following two simplifying assump-
tions are made:

A, Only circulation-free flows around symmetrical pre-
filee are considered. ’

B, It 19 assumed that the velocity potential satisfies
the simplified differential equation resulting from the sa-
called ohaplygin-Kérmén-Tsien equation of state. (Cf. ref-
erences 3, 4, and 5.): IR

Soma remarks may be made concerning this second assump-
tion. In general, the velocity potential m(x,y) satiasfies
the partial differential equation

- —m o m cem oo SR

1 = s = I TR =
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3x \" ax/ oy \° ay/ e mn e e

where p -.is the density ofufhe flu{ﬁ; Since the density is
a given function of the speed :

q
e e . - wg‘ [ 2:. -
o @@

equation (1) is nonlinear. The function p(q) is determined
by the pressure-~density relation (equation of state),. In an
isentropic flow the pressure ©p . satisfies tne relation
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p p~Y = constant (8)

-

where Y 48 the ratio of specific heats for constant pres-
sure and constant volume. (The standard value of Y is
1.405.) Thie implies the density-speed relation

P = Po (1 - Y-2 Q‘*)l/(y_l) o (4)

y R
2 ag

where &5 1s the speed of sound at a stagnation point and

Po the stagnation density. Chaplygin noticed that the
equation satisfied by the potentlal becomes simpler if the
density-speed relation ig taken in the form -

e (e S r

This relation may be obtained formelly from (4) by setting

Y = -1, Though this value 6f ¥ violates fundamental phys-
ical laws,; it should be observed that only the density~speed
relation and not the pressure-density relation enters in the
equation for the potential,

As 2 matter of faect, the function (5) behaves gualita-
tively in the same way as does the function (4) within the

subsonic range; that is, for O = ¢® T 2a,2/(1 + ¥), end
for small values of g/a, the function (5) gives a good
numerical approximation to (4),.

Von Kédrmédn and Tsien justify the use of the value Y = -1
by the remark that it is possible to determine such values
of the constants A and B +that the presgsure-density rela-
tion

P=4/p+ B

will give a g00d approximation to the relation (3) for val-
ues of p and p olose t0 some preassigned values, say to
the values of p and p for the undisturbed flow. This
remark 1s of interest as far as computations of the pressure
distribution are concerned. It in no way affects the wveloclty
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distribution for, as it was slready noticed, the differential
equation for the potential function depends only upon the
density~speed relation, and the preceding pressure-density
relation leasds to the same equation (5) no matter what values
are assgigned to A and B,

It should be emphasized, however, that the primary pur-
pose of this report is not to facilitate the use of the ap-
plication of the approximate relation (5) but rather to de-
velop methods which could be extended to the case of the ac-
tual density-speed relation.

In the following, use will be umade of certaln results
contained in & previous report. (See reference 6.)

This investigation, conducted et Brown Univeraity. wAag
gvonsored by and concducted with the financial amessistance of
the Natlonal Advisory Committee for Aeronautics,

The author largely profited from several instructive
digcusslons he had with Professor 5, E, Warschawski. He
also is indebted to Mr, Charles Saltzer for competent aselst-
ance. o _ . o -

-~

SYMBOLS

Alw) auxiliary function defined by equation (55)
8 local speed of sound

ag speed.of sound at a stagnation point

B{w) auxiliary function defined by eguation (25)

c, CJ positive constants

as® non~-Buclidean length element defined by equation (22)
z(P) domain exterior to the profile P
F integral transformation defined in section 5

£lw) function defining the mapping of the circle into the
prefile P

fr(w) nth approximation to the function #£(w)

Y
il

i
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g (o)
gilk

h(w)
Im( )

complex potential of & compressible flow
function inverse to f£(w)

coefficients of the metric (22)
function defined by equation (44)
imaginary part of ( )

profile surrounded by a compressible flow
Pressure

local speed

speed of the undisturbsd flow

value of ¢q at a boundary point
distorted speed

distorted speed of the undisturbed flow
value of g™ at a boundary point

local Mach number

stream Mech number

radiue of the circle in the {-plane
real part of ( )

arc length measursd aglong P

length of the curve P

parametér occurring in section 8
components of the velocity

distorted velocity

Cartesian coordinate in the z-plane

complex variable
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coordinate of the profile as a function of the arc
length

laading edge

trailing edge

angle at the tralling end

exponent in the adiabatic relation

thickness parameter of a symmetrical Joukowski profile
cangtants ocenrring in section 8

slope of the profile P

angle between the vslocity vector and the x-axis

value of 8 on the boundary

auxliliary complex varliable

square of the distorted speed of the undisturbed flow n
function defined by equation (54)

Cartesian coordinates in the {-plane

density

stagnegtion density

dimensionless length parnmeter along the profile P
veloclty potentlal

vaiue of @ at the boundery

auxiliary analytic Ffunction defined by eqnation (34)
stream function _ ' ' - - T mr;Mﬂ

argument of a point on the circle [{] = R
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ANALYSIS -
1. The Boundary Value Probvlem
Consider a symmetrical profile P in the plane of the
conplex variable =z = x + iy. It will be sasumed that P

is a2 smooth curve, except, perhaps, for a sharp angle at the
trailing edge zqp, that the x-axis is parallel to the axis

of symmetry of the profile and that the profile is given by
an egquation of the form S

z = 2(s), 0< s <8 (e)

where 8 1g the arc length on the curve P measured in the
counterclockwise direction from the point 2zp. Then § 1is
the total length of the profile and

zy = 2(8/2)

is the leading edge., It will bPe convenient to introduce the
dimensionless paragmeter

o = 2ns/8S (7)

The function

@(o) = arg 2'(os/2n) (8)

where

2t(e) = dZ/as

depends only upon the shape but not upon the size or posi-
tion of P. Note that by virtue of the foregoing assumptions

8(0) = m - af2, B(n) = 3n/2, B(2n) = 2m + «f2

where o is the angle at the tralling edge, 0 < a < m,
and '

&2 - o) = 3n - B(c), 0<o<mn (9)

The equation of the curve P may be written in the form
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v

z = Z2(c8/2n) = §%~//‘e19(°) dc + Zg (10)

Now let agp(x,y) be the potential of a circulation-

free flow of a compreseidble fluid rast the proflle P; that
is, a funetion such that

39 Y
n = go —- v = ap —
° 3x ° oy

are the components of the velocity in the x- and y~directions,
respectively, ay being the specd of sound at a stagnation

point, The function o(x,y) is defined and one-valued in
the domain E(P) exterior to P and setisfies the boundary
condition '

22 . C on P (11)
dn

as well as the condition

o qa., o
T ™ —>» 0 88 2 —> o (12)
ox a, dy

Here 3/0n denotes differentiation in the direction normal
to P, and gq, is the speed of the flow far away from the

profile (undisturbed flow).

The conjugate complex velocity is given by

W =1 - iv = qe"ie (13)

where q 1s the speed and 6 the angle between the velocity
vector and the x~axis, The function & satiefies the condi-
tion

[«>]
i

8~ on the upper bank of P
(14)

8= @~ 2r on the lower bank of F

and
8 — 0 as Z -—> o
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Under the assumption of the approximate density-speed
relation (of. Introduction)

po
/l + C18/3'02

p=

the equation of continulty

§§-(pu) + g%-(pV) = 0

takes the form - : .-

{“(?kp)}bw-zbm_gbm
dy 8x 3y oxdy

This is the classical equation of a minimal surface,

1+ (15)

ay

The determination of the flow around a given profile P
requires the integration of the differential equation (15)
under the boundary conditions (11) and (12). In the case of
an incompressible flow the corresponding boundary value prob-
lem can be reduced to the problem of mapping the domain E(P)
conformally into a domain exterior to a circle, A similar
mapping will be defined presently for the flow considered
here.

2, Mapping of the Profile into a Circle

The stream function of the flow Y(x,y) is defined by
the equations :

acp_Pan
3x ~ p 3y -
99 . _ Po OV
dy o] x

This function is constant along any streamline and can be
normalized so that
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V=0 on P -
The complex potential G(g) is defined by
¢(g) = olx,y) + 1¥(x,y) (16)

LLet the potential o be normglized s0 that
®y = ~®r

where (y denotes tne value of ¢ at s = z; and ¢p the
value of @ at % = zp, This oen always be achieved by add-
ing a constant to ¢, The function

&6 = G(z) . (17)

mapa the domain E(P) intoc ths domain in the G-plane ex~
terior 30 the slit

Ve 0, -®p S @% gp “(18)

This>latter domain 1s now mapped conformally into the domain
t{/ € R in the plane of the complex variable f{ = £ + in
by mesng of the relation . A

G = g + Rl) (19)
2
Eguations (17) and (19) define a transformation

t = E(x,y), n =n(x,y) (20)

of the domain E(P) 4into the domain 14! Z R. The points

72 = ZL . g = ZT . g = o
are taken into the points -
g = ”Rl g = R, g = ®

respectively. If R 1s chogen as
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Ppé, , (2
29,

the mapping (20) satisfies the conditions

QE —> 0, éi —> 1 s g —> e (22)
an ox

By virtue of the foregoing mapping there exists a one~
to-one correspondence between the points of the profile P
and those of the circle {{] = R, This correspondence can be
described by means of a function

OI= £{w)

such that the point Z [f{(w)§/3n] corresponds to the point

Re'™, Pilainly f£(w) is an inereasing function satisfying
the conditions

£(0) = 0, f(n) = m, £f(2n) = 2w (23)

as well as the symmetry condition

f(em-w) = 2r - f(w), o< w< 1w (24)

In the following sections it will be shown that the knowledge
of the function f£(w) 4implies the knowledge of the velocity
distribution along PF. -

Remark: In the case of an incompressible flow the mapping
Just constructed is exactly the standard conformal mapping of
the profile into a circle. In the case considered here the
mapping (20) is conformal with reaspect to the Riemann metric
(aS) defined in E(F) by means of the formulas

a8% = g,.dx® + 2g,.4x Ay + gzady° (25)

where

8,2 + q® cos®9

€11 < 2
a, * q
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q® sin 8 cos ©

32 T
2 2
a,” + g
aoz + g° ain®0
Baz = PY 3
a, + q

The proof of this assertion follows inmediately from the re-
sults of a previous report, 9ge rererence 6.)
G, Velocity Distridution Expressed in Terams
of the Function f(w)

1w
At a point [ = Re eguation (19) takes the form

W = Yp cos W

or, by (21)
q

W = 2R -2 cos W . N _ - (26)

&g

Now let ¢q(o) denote the value of gq at a point zlos/2n]
and ®(r) the value of @ at this point. Furthermore let

w= g(o) (27)

be the function inverse to f(w). By (26)

p(o) = 2R S cos g(o) _ (28)
8o

On the other hand, on the profile P

éx (o)

-

2re

= —— &' ()] (29)

q{o)

as

80 that

g (o) E%E S [sin g(c)' gt (o) (30)_
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This formula shows that the function g(o), and therefore
also the function f(w) determines the velocity distribution
along P but for a constant factor,

A formuls permitting a complete determination of the
velocity distribution can be derived by introducing the so-
called distorted velociiy w* defined by

w* = g*e-1© (31)

where g% is the distortsd speed given by

¢ = 4 1 (82) |

26 1 + /1 + q®/a,®

Note that q* always satisfies the inequality O < q*< 1.
It has been shown (see, for instance, reference 6) that the
complex potential G is an analytic function of the varlable
w*, Therefore w* 18 an analytic function of G and hence
also of the complex variable {. The function w* does not
vanish, except at the pointse f = -R and § = R. The imag-
inary part of the logarithm of w* 1is -6. Along the circle
i€l = R the function -6 may be regarded as a function of
the real variable w, { = RelW, This function possesses '
Jumps of the magnitude « and ™™ at w=0 and w= 7,
respectively. It foliows from known theorems of function
theory that at ¢ = -R the funotion w* vanishes as ({ + R)

and at ¢ =R as ({ - R)®/T,  respectively. Furthermore

w*(o) = g* > 0 (83)
Hence the function

-/ 1+ Qs

(&) = w*(t + R)™" (¢ - R) ¢t e (34)

is regular for |f| > R, continuous for {{{ = R, and no-
where equal to either gero or infinity.

Therefore log X({) 1is & one-valued analytic function
ghich is continuous on the circle I} = R and regular at
= oo, Set
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log X(Be*™) = a(w) + 1B(w) (36)

A(wW) may be expressed in terms ef B(W) by means of the
well-known formula

T
Alw) = - = {B(w+t) - B(w ~ t)} cot ig-dt + Ay (36)
0

am,

where A, 1s the value of log [X! at infinity. (See, for
instances, reference 7, p. 243.) Now by (33) and (34)

Aw = l0g g (37)
. oo
A(w) = log &% [£(w)] - 20g |1 + &% |1 = &7 (39)
and
B(w) = —g[f(w)]— arg(l+ eiw) - _%" arg(eiw-— 1)+ <l+';(:‘>w (3e)

Here 6(g} and i‘(c) denote the Kalues of and q*,
respectively, at the point Z(ocS/2n/) of ¥, Noting that

‘l + eiwl = Zlcos-w|. Il - eiwl = 2’51n ?I
2 2
and that
@ for O < W<
1w 2
arg(l + e ) =
’ % + T for nmn<w< 2n
iw w
- = = + -
arg(e 1) 5 5
as well as that by (14)
- . Off(w)] -~ = for O< w< g
elf(w)] = { . S (40)
B{f(w)] - 2r  for m< w< 2nm
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equations (38) and (39) can be written in the form

1+

a1Q

cos Ql
2

log G* [f(w)] = Al(w) + log-{z

B(w) = -© [f(w)] + m;ﬂ“ w + (’l‘f - %)

From (41), (42), and (36), it follows that

1+ &

a*[%@b)] = q* 3 ™

[==]

o
sin 5

3]
cos =)

where

TT
h(w)=§l?/ {@I:f(w+ t)]_e [f(w— t)]-i“—:—i t} cot ;zb‘ at
o

Since by (32)

it follows from (43) that

A @
gf(w) q* 2t w wlm
2 cos —| isin ~—
2 2
2qQ
2{1+ &) ™
~A2 lﬁ-c:os.:a %?sin % eh(w)}
where
qa
3 1
— —_ o
A= (ax) =<

156

(43)

(44)

(45)

(46)

(47)
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Thie 1s the desired expression of q(o) 4in terms of the
function f(w), The parameter A may be used instead of
qwfao to determine the conditions at infinity. Thie param-
eter can be easily expreseed in terms of the stream Maoch num-
bor (cf, reference 6):

2
M
= (48)

Ll + /1 - M

The fact that the velooity distribution can be expressed
in terms of the funetion £(w) in two different ways permits
the derivation of an integral equation for the function f{w),

4, The Integral Fquation For the Function f(w)

Bquations (28) and (29) may be wriiten in the form

~ .
& [f(w)] = 2R ~® gos w
8o

ap [f(w)] 1
aw £ (w)

Zﬂao
S

w1 '
quﬁu)] =
Combining these two equations yields the relation

= EE 8o BRq,,
fH) s T T o

|sin w] (49)

Now substitute in (49) the value of ag/a given dy (46).
Then

- 1.2

2
by 2(1+2)
{e‘-h (QU)_J\B ™

K eh(w)}. (50)

cos ¥

£ (w)=0 &

sin % sin %
where
PR TR e

S aoq;
and h(w) and A are given by (44) and (47), respectively,
Integrating
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f(w)

oy

-

64
-% 2 (1+%)

1
sin %%! ﬂ{}'h(w'>—%2 2

w w?
2

i
sin >

2
B eh(w' )}dw'

Setting w = 2m here it follows from (24) that

2 aTr 1_‘%‘_ 2(1+(Y‘ | 2 .a—a'
f = ! 1
=Cf sin %—-l {e"h(w')—kz T lcos -(%— sin w? eh(w )}dw'
]
80 that finally
f (w)
w '-1_% 2(1+g)l 12 1 %g h(wl)
J siﬂ%w {%‘h(w'>—xz lccs%r- sin%?- & }dw'
)
=2 (51)
a n 2q
atmi - 1-= a(1+2 =2 '
J |sintd- "{}‘h(w')—xz ) cos- 'sin%} ™ h(w )}dw'
3

Sincs h(w) 1is given by formuls (44) thie is a nonlinear
intezral equatlion for the unknown funetion f(w).

5, Solution of the Integral Equation

The integral equation (51) can be written in the form

f(w) = 7 {@.f(w')}

where F{}uf(uﬂ)}-'denotes the right-hand side of (51). The oper-

ation F is g functional transformation which takes a con-
tinuouely differentiable function f{(w'!') satisfying the con-
ditions

£(0) = 0 £(2n) = 2m

into & function satisfying the same end-point conditions.
Therefore the solution of (51) can be attempted by the iter-
ation method. Choose some function fo(w) satisfying th

preceding condlitions and compute successively o
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If the sequence

fo(w), f;(w)' e fn(w)n ‘e

converges toward s funotion (W) and 2im F(fy) = F(£), thie
functicn . £ satisfies the integral equation.

Prom the purely mathematical point of view it would bdbe
necessary to supplemsnt the preceding consideration dy prov-
img that under suitable assumption:! (1) the integral squa-
tion possesses a solution, {11) this solution can be obtained
by iterations, and (iii) this solution is an increasing
function., It is hoped that such proofs will be presented at
some later date. At present 1t may suffice to state that
the statements (1) to (iii) seem to be verified in the cases
for which the computations have been carried out. The ex-
lstence of an increasing funcition satisfying the integral
equation seems quite obvious from physical reasons, s for
the convergence 0f the method, reference is made to the faot
that the method described here is rather similar to

Theodorsen's method of conformal mapping (references 1 and 2)

for which a rigorous convergence proof has been found (ref-
erence 8),

It might be noted that the desired solution f{(w) must
satlefy the symmetry ocondition

flan - w) = 2n - £(w), fi(em - w) = £t (w) (52)

If the function £ (w) eatisfies this condition, so will
all successive approximations f (w). It will therefors De
sufficient to compute £, (W) only in the interval Oguwsgm,
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The only nontrivial step in computing the functions
£,(w) coneists in evaluating the integral

ui
L(w) = g;;/n {§n+1(w4-t) - An+1(w—-t)} cot % at (58)
0 : .

where

W) = o [fn(w)] - 2iny (54)

1

(Cf., equations (51) and (44).) It should be noted that this
is a proper Riemann integral, In fact, the value of the in-
tegrand at & = 0 1is

lim {An+1(w + %) - An+1(UJ - %) <2t cob %>}

t=>0 2%

= anl, () = 4 {e' L2 (w)] £1(w) - 9—;—5‘-}

By using this information, the integral (53) can be evaluated
numerlically, say by the trapezoidal rule,

After f(w) has been computed with sufficient accuraey,
%he)velocity digtribution is computed by means of fcrmula
46

6. Choice of the Function folw)

The rapidity of convergence of the iteration method for
solving equation (51) will depend upon the choice of the
function fo(w) the Oth agpproximation, In order to reduce

the computational work, this function should always satisfy
condision (52),

A few methods of chooging the function fy(w) are
listed, 1n the order of preference!
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(x) Choose for f,(w) the solution of equation (51)

for a value A' ag close as possible to the value of A for
which the equation is to be solved,

(B) Choose for f,(w) the solution of equation (51) for

the desired value of A . or for & value A! close t0o the de-
sired value, and for a profile P! different from but close
to P, -

(Y) Choose for f,(w) the function resulting from the

conformal mapping of the profile P onto a circle; that is,
the solution of (51) for A = O,

(6) Choose for fo(w) e function apprpximgting the
functlcn resulting from the conformal mapping of the profile
P onta a circle. For thin profiles such a funotion 1s given
by

o
folw) = = (1 - cos w), 0w

&

A

™
(55)

fol{2m - w) = 2m - fo(w5

Note that (Y) is a special case of (a) (set A! = O0) and (8)
a special case of (B) (set A!' = O and choose P! ae a
stralght segment).

7. Velocity Distribution at Foints Not on the Profile

It remaing to show how the knowledge of the function
f(w) poermits the computation of the velocity distribution
at poinss not on the profile, Thie is done by means of the
following theorem which also shows that solution of the in-
tegral oquation (51) actually yields & solution of the bound-
ery value problem stated in sectlon 1,

Note firet that from the way the lntegral egustion has

been set up it follows that there exists an analytlc functlon
w*({) regular for [{| >1 and such that

-~ w*(eiw) 275* [f(w)] e—-ig[r(w)] ’ (66)
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where q* is given by (43) and (44) and 6 by (40). 1If
f(elW) "1 known, w*({) can be computed, say by Cauchy's
formulal

aTl

w*(g) = - _}_f vl*(eiwleiw dw + q.*m (57)

iw
2 (s} & - ¢

Now the following théorem holds:

Let f(w) Dbe an increasing function satisfying (51).

Set
4 4 _
z:ﬂiy:cl{[ﬁ.ﬁ(1-21.5)dg:jlfw<c>(l-§,)a e

where ©C; 1s a real constant and the bar denotes the con-
Jugate complex quantity. The transformation

x = x(g,n), v =y(t, n) (59)

of the z-plame into the l-plene defined by (68) (for | t|z1)
is_one-to-one. It takes the domain {{|>1 3into the domain
E(P) exterior to ths profile P. The function

® = 20,Re <g + -1§-> (60)

considered ags o function of x and y 1is the desired poten-
tial of the compressible flow around P; that iz, 1t satis-
fies the differential equation (15), the boundary condition
(11) and the condition {12).

The proof of this theorem will be found in the appendix,

After @ 1is found, the velocity components u and v
can be determinsdé by differentiation. But it is also true
that w* considerel as a function of e is the distorted
velocity (cf. sec. 3) and therefore
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2w w
1 = [we® {wn

u - iv = a,
The proof of this last statement is left to the reader.

8. Examples
A3 an illustration of the method, veloclty distributions
have been computed for s circle and for a symmetriocal Joukowskil

profile with ¢ = 0,16 (¢ ©being the usual parameter determin-
ing the thickness), The following valuea of A have been used

A
A

0.045 for the circle

0,157 for the Joukowskl profile

These correspond to the following values of the stream Mach
number :

M = 0,408 for the cirecle

co

M, = 0,685 for the Joukowskl profile

0

These values of M ‘are known to be close to the eritical
values, (The critical stream Mach number is the stream Mach
number)for which the maximum local Mach number is equal to
unity.

In the case 0f the cirele
B(g) = o + %, @!(c) = 1, a = 7

It is natural to set
folw) = w
This corresponds to case (Y) of section 6. The first approx-

imatlon-is easlly computed in closed form and is equal to

A
f = +  —— i 3
1((1)) w 1 - 2N sin w

In the case of the Joukowski profile
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a = 0

The function ©(s) and ©'(s) are given by the parametric
formulas o . -

2ey (14 ¢)
€

e=m -{estahh“l(escés ) - e tanh™* (e cos8 t)}

) 3

2 1+ 2e]
3

T
4 cot % L(pot £) +

@=1 + t - tan~?

2

.3 +2 2

[(cot £) + 5-273] - 4(cot %)
€

® , gcsc b {?l— )1+ 36)(sin t)4 + 6(sin t)a - -'Ejj"'}
ds 8¢, €3 : (L+ ¢)®

where the parameter +t ranges from & = 0O to % = and

rold

€39 €53 and €5 are constants determined by

- J + €) 1+ 3€)

3 1 + 2¢

The proof of these formulas will be found in reference 9.

The funetion s, ®, d8/ds are tabulated in tadle I, The ap-
proximation of order O has again been chosen according to
case (%) of section 6, In the case of a circle the func-
tion f{w) must satisfy the symmetry relation

fln - w) = - £(w)
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It ig-therefore suffiocient to consider this function in the
interval 0 € w < w/3., Acecordingly the functions fao(w)
have been computed for w = 0%, 10°, ..., 90°, In the case
of the Joukowski profile, the functions f,(w) heve been
computed for w= 0%, 10°, ..., 1809, The convergenae of
the successive aprproximatione 1s seen from tables II,

The resulting velocity distributions are given in tables
III and plotted in figures 1 and 2, The argument 5 le the
argument of a point on the cirsle into which the profile ie
mapped conformally. The results obtalned have been compared
with those arising from the Fdrmdn-Tsien velocity correction

formula

.S_g(_‘}_) - : (61)
TS
Q.71

where <E;> is the value of the ratio at local velocity to
q.571

velocity at infinity for an incompressible fluid, To use
thig formula amounts to replacing the funotion f(w) by the
function arising in conformal mapping of the profile into
the circle. In the case 0f the Joukowski profile Kaplan's
resultes (reference 10) obtained by a modified Poggi method
are also given for the sgke of comparison,

It will be noticed that the.present method (which con-
slasts of an actual solution of the boundary value problenm
for the case ¥ = ~1) gives a greater compressidility effect
than the one predicted by the approximate methods mentioned.
(To evaluate this remark correctly, note that Von Kdrmén ex-
pressed the opinion that in the case when the assumption
v = «1 1is applied to air and formula (61) is used, the error
committed 1in uweing this formula seems to counteract the error
committed in using the incorrect pressure-density relation.)

_CONGLUDING REMARKS

It has been shown that under the assumptlion of the lin-
earlized pressure~volume relation and of a symmetrical flow
the veloclty distribution of the compreseible flow past &
wing section of arbditrary given shape can be determined rig-
orously by a method which requires not considerably more
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computational labor than the case of an incompressible flow,
This is, of course, only the first step toward the complete
solution of the velocity distridution problem. The next
etep should consist of extending the present method (a) to
the case of the actual adiabatic pressure-~density relation,
(b) to the case of a circulatory flow around a not necessar-
ily symmetrical obstacle.

Remark: After this paper was completed the guthor
learned about a paper by Slioskin (reference 11), in which
the same problem is rsduced to an integrd~differential equa-
tlon, different from the one derived in this paper.

Brown University,
Providence, R, I.,, May 1945,
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AFPENDIX

Thils appendix contains the proof of the theorem stated
in sectlon 7,

The mapping properties of the function (58) follow im-
medigtely from the following three statvments,

(n) The function (B8) takes the point § = ~ into the
point 2 =.oo,

(b) The function (58) maps the circle !;[ =1 4in a one-~
to-ons manner ianto the profile P, -

(o) The Jacobian

L o(x,y)
d(¢,n)

is positive for mll values of £ and n, £° + n° >1,
To verify (a), observe that as §—¢‘D, w* apﬁroachoa
the value q¥* = > 0,

To verify (b), note that the integrals in (58) are inde=-
pendent of the path since the integrands are analytic func-
tions of §. 1In order to obtain tle image of |{]|] = 1 the
integratlon may be performed along the cirecle. But for

§=BiUJ
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1 « 2Ydf = - 28in w dw
B

whereas w*(eiw)

is given by (56).
the curve into whiech |[{} =1

Hence the equation of
the form

is taken may be written in

w -

Set o = f£(w) and note that the integral equation (51) im-
plies that £(2n) = 2w, By virtue of (40), (45), and (49)
the preceding equation may be written in the following forms!

W

160 f (w
z = ozﬁ/P fr(w) e [ 2 aw, 0<w< 2n (A1)
o
o)
z = 03/ eie(c) do, 05 o < 2m (42)
o]

where OCp 1s & new positive constant.

that {1 =1 1is taken into P

Bguation (Al) shows
that P

(ef. squation (10) and note
is determined but for a scale factor). Equation

(A2) shows that the mapping of the cirecle into P 1s one-
to-one, for by hypothesis,

fr(w) >0 (A3)

To verify (c), observe that it follows from

and (50) that |w*(el®)] < 1, Since the maximunm

(a3), (43)
ulus of an analytic function is attained on the

of the mrod-
boundary,

" >
fwx(t) | <1 for [¢{| =1 (A4)
Now the Jacobian is equal to
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e ([T v 2] [ - 3 D)

o 8| 1(® 1 ‘a
BRI (;wm“ )
8o that by (44)
J >0 gor |ti>1

Next, equations (B8) and (60) may be rewritten in the

form
x = Rexa (), ¥ = Rexa(l), = = Rex, ({) (45)

vhere T S

L 1 1
X (0) = °=._[{w(g> A DINCEE O
B 1 1
@ = s {0} (- )
x, (t) = 20, (g N _H
Since

X2 + Xgo + Xpo = O

(AB) is & Weleretrassian parametric representation of a mini-
mal surface. In other words, @ considered as a function of

x

and ¥y eatisfies egquation (15).

[

il
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A simple computatlion shows that a line element normal
to the circle |{l =1 1igs taken by the mapping (58) into a
line-element normal to the profile P, Since the normal
derivative of ¢ 4in the {-plane vanishes s0 does the normal
derivative of @ in the z-plane, Thus ¢ considered as a
function of x and y eatisfies the boundary condition (11).

Since

dz ox .1 oy dz . -} 1
2t 2t 2t at ol

03 ox dy dz dz
an - an - tan - 3 5T)

and w*(e=) = q* , it follows from (68) that as {-—o
dx 1 - g3 d
'é—'— -y cl ‘qw f -—y— —,0
¢ Q¥ of ]
x AL &
on ’ dn 1 qn
oo
so that
1 *
EE - % o , Eé- ~— 0
3x G, 1 - q** ¥
on on 1 a®
— > 0, —_— s —
Bx By Cl 1 + q*a

Now, as { - O

dep dep
— ¢ —_— 0
3¢ %
and therefore
_6_(1‘9.-_-.6&.5_.+E2-a—-—9 29 % = 3= T
dx  JE dx nox 1 -q%% s, o
.aQ:_a_CEQ.E.-FéEL—*O
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Table I.
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Functions entering into the comgutation of the velocity

distribution along a symmetrical Joukowskl profile with

&= .15
t s @ | a@asll ¢ | s ® | a®/as
0.00 | 0.0000 | ®.1416 0.80 | 3.02687 | 3.8755
.02 | .o0ee7 | 3.0834 | -.407¢ |l .82 | 3.0720 | 3.8980
.06 | .B191 | 8.0034 | -.0804 | .86 | 3.0419 | 3.9428
.08 | .8148 | 2,9888 | -.0220 (| .88 | 3.0485 | 3.9650
.10 | 1.1062 | 2.9892 | +.0238 |f .90 |3.0510 | 3.9873
.12 | 1.3728 | 8.0009 | +.0847 i .92 |5.0551 | 4.0094 ,
.14 | 1.6066 | 5.0206 | +.1040 [l .94 |3.0591 | 4.0315 .
.16 | 1.8071 | 8.0453 | +.1437 il .96 |3.0629 | 4.0535| +5.8808 !
.18 | 1.9766 | 3.0730 | *+.1850 || .98 |3.0666 | 4.0755| +6.0844 |
.20 | 2.1193 | 3.1024 | +.2287 [i1.00 |3.0701 | 4.0975| +6.3086 !
.22 | 2.2%08 | 8.1326 | +.2757 ||1.02 |3.0735 | 4.1194| +6.5277 "
.24 | 2.3407 | 8.1630 | +.3264 [|1.04 |3.0768 | 4.1412 | +8.7464 |
.26 | 2.4265 | 3.1933 | +.3813 (§1.06 |3.0800 | 4.1630 | +6.98%0
.28 | 2.4005 | 3.2232 | +.4408 [f1.08 |3.0831 | 4.1848 !
.30 | 2.5620 | B.2586 | +.5052 (1,10 |3.0861 | 4.2065
.22 | 2.6158 | 8.2816 | +.5750 fl1.12 |3.0890 | 4.2282
.84 | 2.8628 | 8.3101 1.14 |3.0018 | 4.2499
.36 | 2.7029 | 3.3381 1.16 |3.0945 | 4.2715
.38 | 2.7285 | %.3855 | +.8185 [{1.18 |3.0972 | 4.2932
.40 | 2.7097 | 8.3026 | +.9119 [|1.20 |3.0098 | 4.3148
.42 | 2.7975 | 8.4192 1.22 |3.1024 | 4.3363
44 | 2.8821 | 3.4454 1.24 |3.1049 | 2.3579
.46 | 2.8442 | 3.4712 1.26 |3.1073 | 4.3794
.48 | 2.8640 | 8.4968 |+1.3500 {f1.28 |3.1097 | 4.4009
.50 | 2.8818 | 3.5220 |+1.4761 f|1.30 |[&.1121 | 4.4224
.52 | 2.8980 | B.5469 |+1.6082 {f1.32 [3.1144 | 4.4439
.54 | 2.9127 | 8.5715 1.84 |3.1167 | 4.4653
.56 | 2.9261 | 3.5959 1.36 |3.1190 | 4.4868
.58 { 2.9384 | 3.6201 1.28 |3.1212 | 4.5082
.60 | 2.9407 | 3.8441 1.40 |3.1234 | 4.5297
.62 | 2.9600 | 3.6679 1.42 |3.1256 | 4.5511
.64 | 2.9697 | 3.8915 |+2.5419 |1.44 |3.1277 | 4.5725
.66 | 2.9786 | 3.7149 |+2.7190 |l1.46 |3.1209 | 2.5939
| 166 | 2.0860 | B.7382 |+5.5014 |[l1.48 |3.1320 | 4.0153 t
70 | 2.0946 | 3.7614 |+3.0895 [|1.50 |3.1341 | 2.6867
.72 | 8.0019 | 3.784a |+3.2823 [{1.52 |3.1363 | 4.6581
.74 | 3.0087 | 3.8073 1.5¢ |3.1384 | 4.6794
76 | 3.0150 | 3.8302 1.56 |3.1405 | 4.7008
.78 | 3.0210 | 3.8529 1.5708|3.1416 | 4.7124 [+10.177

L
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Table Ila.
Successive approximations to the function f(v) in the
case of a circle (M, =.406, A = .045)
= “’m s To@)| [ | f0@) | 5@ | f50) | f5W)
o~ CO000 | . 0000 « 00000 00000 00000 « 00000 00000
10 .17453 17453 «19144 18171 18611 «184720 . 18558
20| .34907 « 34907 . 38086 « 56239 . 37082 .38808 | .36976
30| .52360 . 52360 . 56843 54122 .55287 « 54900 . 55135
40 .69813 .690813 | .74683 71769 73138 72873 720581
50y .87266 .8'7286 .92136 .89172 . 90587 90095 .90388
60/1.04720 |1.04720 { 1.09003 | 1.06355 | 1.07635 | 1.07183 |1.07450
7011.228173 |1.22173 | L.25352 | 1.23362 | 1.24333 |1.23985 |1.24191
80{1.39626 |1.39626 | 1.41317 | 1.40250 | 1.40768 |1.40586 |1.406e8
90/1.57030 |1.57080 | 1.57080 | 1.57080 | 1.57072 |1.57080 |1.57080
Table IIb.

Successive approximations to the function f{w) in the
case of a symmetrical Joukowski profile (€ = ,15,
M, = .685, A= .469)

\rf‘:ﬂ £,6) | £1(0) | fo0) | fz@)
ad .
.00Q0 0000 Q000 «Q000 . 0000 |
10| .1745 .0437 03824 0323 0324
20} .3490 1273 <1275 1274 <1271
30| .B236 +2570 .27886 2785 2779
40| .6981 .4470 4762 4755 » 4750
50} .8726 .8645 «7090 7070 .'7068
60 {1.0472 .9078 «9649 9609 9615
70 11.221%7 1.1682 1.2320 1.2257 | 1.22870
80 |1.39862 1.4332 1.49986 1.4909 1.4931
90 {1.5708 1.6956 1.7586 l1.7484 |'1.7514
100 11.7483 1,86082 2.0022 1.8814 1.9981
110 1.9198 2.1857 2.22538 2.2156 2.2193
120 [2.0944 2.4016 2.4P48 2.4174 2.4208
130 2.2689 2.590e2 2.5992 2.5956 2.5882
140 [2.4434 2.75855 2.7481 2.7494 2.7601
150 2.6180 2.8902 2.8728 2.8787 2,8776
160 |2.7925 2.9064 2.9764 2.9850 2.9821
170 |2.9670 3.0773 3.0639 3.0702 3.0875
180 |3.1416 8.1418 3.1416 8.1416 33,1416

1 2.9831

fq(w)

0324
1275
2787
.4760

7078
.9620
1.22'72
1.4928
1.7508

1.9943 .
2.2182
2.4199
2.5872
2.7495

2.8778

5.0686
3.1416
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Table IIls
Velocity distribution about a circle (Hw=.406)

NACA TN No. 1006

Velocity distribution about a Joukowski Profile (¢=.15, M =.685)

\JQQE? Present K&rman-Tsien Incompressible
3 Method Method

0 " 0.000 0.000 0.000
10 + 835 333 . 3547
20 «875 .667 .684
30 1.014 1.000 1.000
40 1.350 1.326 1.286
50 1.871 1.636 1.532
60 1,052 1.812 1.732
70 2.185 2.134 1.879
80 2.336 2.279 ~1.,970
20 - 2.389 2.329 2.000

- Table IIIb

/a | Present Kérm&n-Tsien | Kaplan Incompressible
& Y| Method Method -

1] .849 .839 .870
10 .835 .854 .852 874
20 .847 .869 867 .887
30 873 .894 .892 .809
40 912 928 927 . 938
50 . 957 970 970 974
60 Y.011 1.019 1.021 1.016
70 1.073 1.073 1.078 1.081
80 1.142 1.132 1.139 1.109
20 1.215 1.191 1.203 1.157

100 1.289 1.250 1.285 1.203
110 1.360 1,303 1.322 1l.244
120 1.417 1.347 1.368 l.278
130 1.446 1.373 1.394 1.297
140 1.427 1.369 1.385 1.204
150 1.325 1.308 1.312 1.247
180 1.088 1.128 1.110 1.1086
170 .845 .704 .8674 .738
180 0.000 0.000 0.000 Q.000
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Figure 1.- Velocity distribution slong & circle (Mg,=.408).
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